top of page

GPCR Retreat Program

Atypical Structure and Function of Typical Chemokine Receptors

Atypical Structure and Function of Typical Chemokine Receptors

Date & Time

Saturday, November 4th / 11:00 AM

Abstract


Coming Soon

About Amy Ramsey


"One of the principal efforts of our laboratory is to understand the physiological consequences of NMDA receptor deficiency using genetic mouse models. The NMDA receptor is a subtype of glutamate neurotransmitter receptor that regulates the formation and maintenance of synaptic connections between neurons. It plays an important role in the way that neurons wire together and change the strength of synaptic connections with experience. Our laboratory is interested in the role of NMDA receptors not only on neurons, but also on other cells of the brain such as astrocytes, oligodendrocytes, and endothelial cells.


NMDA receptors are implicated in a number of brain disorders including schizophrenia, autism, and epilepsy. Our laboratory has a long-standing interest in the way that NMDA receptors contribute to the symptoms of schizophrenia. Recently, we have focused our efforts on GRIN disorder. This is a rare neurodevelopmental disorder caused by de novo mutations in the GRIN genes that encode NMDA receptors. Although symptoms of GRIN disorder appear very early in childhood, it can take years to reach the right diagnosis through genetic tests. Children with GRIN disorder experience developmental delays, intellectual impairment, visual impairments, and difficulties with daily tasks like talking and walking, feeding and toileting. Many children experience seizures that can be life-threatening.


Our laboratory is working to help patients by developing genetically-modified mice that have disease-causing variants in their Grin1 gene. These mice can then be used to test dietary regimens, drugs, and adenoviral gene therapies for their ability to improve specific symptoms. The Ramsey lab uses a combination of biochemical and behavioural approaches to understand the many roles of NMDA receptors and to find treatments for debilitating brain disorders." The Ramsey Lab



Amy Ramsey on the web


Great Lakes GPCR Retreat and Club des Récepteurs à Sept Domaines Transmembranaires du Québec

Great Lakes GPCR Retreat and Club des Récepteurs à Sept Domaines Transmembranaires du Québec


22nd GPCR Retreat Sponsored by


 

Canada Research Chairs
U of Ottawa
Dr. GPCR
Canadian Institutes of Health Research
Bristol Myers Squibb
InversAgo Pharma
Monica Seger and Family
Duke University, Dept. Cell Biology
OHRI Neurosciences Program
University of Toronto Mississauga
Domain Therapeutics NA Inc.
Otsuka Pharmaceuticals
McGill University, Dept. Pharmacol & Exp Ther
University of Toronto, Dept. of Physiology
Hotchkiss Brain Institute,University of Calgary
OHRI
Université de Montréal, VP Office
Find Therapeutics
University of Toronto, Dept. Pharmacol & Toxicol
Deep Apple
University of Illinois at Chicago (Mark Rasenick)
uOttawa, VP Research Office
American Society of Pharmacology and Experimental Therapeutics
University of Western Ontario Schulich School of Medicine & Dentistry
Heliyon
Université de Sherbrooke, Dept. Pharmacology-Physiology
Research Institute McGill Univ. Health Centre
adMare Bioinnovations
Superluminal
Université de Montréal, Faculty of Medicine
Université de Sherbrooke, Institut de Pharmacologie
Science Signaling
Montana Molecular
IRIC
uOttawa, Dept. Cellular & Molecular Medicine
uOttawa, Dept. Biochem Microbiol Immunol
uOttawa, Behavioral & Physiology Core
bottom of page