top of page
Cover-Blank.jpeg

RGS5 maintaining vascular homeostasis is altered by the tumor microenvironment

Published date

November 20, 2023

Abstract


"Background: Regulator of G protein signaling 5 (RGS5), as a negative regulator of G protein-coupled receptor (GPCR) signaling, is highly expressed in arterial VSMCs and pericytes, which is involved in VSMC phenotypic heterogeneity and vascular remodeling in tumors. However, its role in normal and tumor vascular remodeling is controversial.

Methods: RGS5 knockout (Rgs5-KO) mice and RGS5 overexpression or knockdown in VSMCs in vivo by adeno-associated virus type 9 (AAV) carrying RGS5 cDNA or small hairpin RNA (shRNA) targeting RGS5 were used to determine the functional significance of RGS5 in vascular inflammation. RGS5 expression in the triple-negative (TNBCs) and non-triple-negative breast cancers (Non-TNBCs) was determined by immunofluorescent and immunohistochemical staining. The effect of breast cancer cell-conditioned media (BC-CM) on the pro-inflammatory phenotype of VSMCs was measured by phagocytic activity assays, adhesion assay and Western blot.

Results: We identified that knockout and VSMC-specific knockdown of RGS5 exacerbated accumulation and pyroptosis of pro-inflammatory VSMCs, resulting in vascular remodeling, which was negated by VSMC-specific RGS5 overexpression. In contrast, in the context of breast cancer tissues, the role of RGS5 was completely disrupted. RGS5 expression was increased in the triple-negative breast cancer (TNBC) tissues and in the tumor blood vessels, accompanied with an extensive vascular network. VSMCs treated with BC-CM displayed enhanced pro-inflammatory phenotype and higher adherent with macrophages. Furthermore, tumor-derived RGS5 could be transferred into VSMCs.

Conclusions: These findings suggest that tumor microenvironment shifts the function of RGS5 from anti-inflammation to pro-inflammation and induces the pro-inflammatory phenotype of VSMCs that is favorable for tumor metastasis."

Contribute to the GPCR News

Coming soon

More from Dr. GPCR

bottom of page