A conserved intracellular allosteric binding site (IABS) has recently been identified at several G protein-coupled receptors (GPCRs). Starting from vercirnon, an intracellular C-C chemokine receptor type 9 (CCR9) antagonist and previous phase III clinical candidate for the treatment of Crohn's disease, we developed a chemical biology toolbox targeting the IABS of CCR9. We first synthesized a fluorescent ligand enabling equilibrium and kinetic binding studies via NanoBRET as well as fluorescence microscopy. Applying this molecular tool in a membrane-based setup and in living cells, we discovered a 4-aminopyrimidine analogue as a new intracellular CCR9 antagonist with improved affinity. To chemically induce CCR9 degradation, we then developed the first PROTAC targeting the IABS of GPCRs. In a proof-of-principle study, we succeeded in showing that our CCR9-PROTAC is able to reduce CCR9 levels, thereby offering an unprecedented approach to modulate GPCR activity.
top of page
GPCR News
Post: Blog2_Post
Search
Recent Posts
See AllNovember 2022 "Neuropeptides produce robust effects on behavior across species, and recent research has benefited from advances in...
November 2022 "Some G protein-coupled receptor (GPCR) ligands act as "biased agonists" that preferentially activate specific signaling...
November 2022 Deciphering the signaling mechanisms of β-arrestin1 and β-arrestin2 in regulation of cancer cell cycle and metastasis...
bottom of page
Commentaires