top of page

GPCR News 

Post: Blog2_Post
Writer's pictureGPCR News

Latrophilin-1 drives neuron morphogenesis and shapes chemo- and mechanosensation-dependent ...

Latrophilin-1 drives neuron morphogenesis and shapes chemo- and mechanosensation-dependent behavior in C. elegans via a trans function

Latrophilins are highly conserved Adhesion GPCRs playing essential roles in the mammalian nervous system and are associated with severe neurological disorders. Recently, it has been shown that murine Latrophilins mediate classical G-protein signals to drive synaptogenesis. However, there is evidence that Latrophilins in the nematode Caenorhabditis elegans can also function independently of their seven-transmembrane domain and C terminus (trans function). Here, we show that Latrophilin-1 acts in trans to mediate morphogenesis of sensory structures in the C. elegans nervous system. This trans function is physiologically relevant in copulation behavior. Detailed expression and RNA-Seq analyses revealed specific LAT-1-positive neurons and first insights into the genetic network that is modulated by the receptor function. We conclude that 7TM-independent functions of Latrophilins are essential for neuronal physiology, possibly complementing canonical functions via G protein-mediated signaling.



Recent Posts

See All

コメント


bottom of page