Nocturnal asthma is characterized by heightened bronchial reactivity at night, and plasma melatonin concentrations are higher in patients with nocturnal asthma symptoms. Numerous physiological effects of melatonin are mediated via its specific G protein-coupled receptors (GPCRs) named the MT1 receptor, which couples to both Gq and Gi proteins, and the MT2 receptor, which couples to Gi. We investigated whether melatonin receptors are expressed on airway smooth muscle; whether they regulate intracellular cyclic AMP (cAMP) and calcium concentrations ([Ca2+]i), which modulate airway smooth muscle tone; and whether they promote airway smooth muscle cell proliferation. We detected the mRNA and protein expression of the melatonin MT2 but not the MT1 receptor in native human and guinea pig airway smooth muscle and cultured human airway smooth muscle (HASM) cells by RT-PCR, immunoblotting, and immunohistochemistry. Activation of melatonin MT2 receptors with either pharmacological concentrations of melatonin (10-100 µM) or the nonselective MT1/MT2 agonist ramelteon (10 µM) significantly inhibited forskolin-stimulated cAMP accumulation in HASM cells, which was reversed by the Gαi protein inhibitor pertussis toxin or knockdown of the MT2 receptor by its specific siRNA. Although melatonin by itself did not induce an initial [Ca2+]i increase and airway contraction, melatonin significantly potentiated acetylcholine-stimulated [Ca2+]i increases, stress fiber formation through the MT2 receptor in HASM cells, and attenuated the relaxant effect of isoproterenol in guinea pig trachea. These findings suggest that the melatonin MT2 receptor is expressed in ASM, and modulates airway smooth muscle tone via reduced cAMP production and increased [Ca2+]i.
top of page
GPCR News
Post: Blog2_Post
Search
Recent Posts
See AllNovember 2022 "Neuropeptides produce robust effects on behavior across species, and recent research has benefited from advances in...
160
November 2022 "Some G protein-coupled receptor (GPCR) ligands act as "biased agonists" that preferentially activate specific signaling...
400
November 2022 Deciphering the signaling mechanisms of β-arrestin1 and β-arrestin2 in regulation of cancer cell cycle and metastasis...
200
bottom of page
Comments